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ABSTRACT 

 

In this paper, we present our work for automatic speech 

recognition (ASR) in the Multimodal Information Based 

Speech Processing (MISP) Challenge 2021. We proposed a 

combination of the guided source separation-based (GSS) 

speech enhancement technique and a novel Channel-wise 

Av-fusion encoder (CAE) based acoustic model and found 

that a kindly combination of these techniques provided 

essential accuracy improvements. Our final system achieved 

Chinese Character Error Rate (CCER) of 25.07% for the 

evaluation data, with an absolute reduction of 37.67% 

compared with the baseline model. 

 

Index Terms— Multimodal, Channel-wise, Guided 

Source Separation, Audio-Visual Speech Recognition 

 

1. INTRODUCTION 

 

Far-field automatic speech recognition (ASR) is essential 

area of research and have many real-world applications such 

as transcribing meetings and shopping center conversations. 

Although end-to-end ASR approaches have achieved 

promising results for some open datasets such as AISHELL 

[1] and LibriSpeech [2], their performance remains 

unsatisfactory for far-field conditions in real environments. 

Far-field ASR can be challenging due to background noise 

and reverberation in the acoustic environments, 

conversational multi-speaker interactions with a large 

portion of speech overlap. In addition, due to the lack of a 

public dataset of far-field speech, it is more challenging to 

develop an ASR system in this field. 

Over the past decade, some progress has been made in 

addressing the challenges posed by far-field speech. For 

ASR, this improvement can be attributed to effective data 

augmentation [3], advances in speech enhancement [4] and 

E2E-ASR techniques. Some work has tried tackling 

reverberation and noise present in the far-field recording by 

training with room impulse responses and background 

noises [5]. Recently, spectral augmentation [6] has been 

successfully used for end-to-end and hybrid ASR systems. 

Adapting the acoustic model to the environment and speaker 

has also been studied. Another popular direction is frontend-

based approaches such as dereverberation [7] and denoising 

through beamforming [8]. Far-field speaker diarization has 

also benefited from enhancement methods and techniques to 

handle overlapping speech. Guided source separation (GSS) 

[9] was proposed, which uses additional information such as 

time and speaker annotations for mask estimation. Recently, 

some work [10,11] shows additional modality information 

yielding better environmental and speaker robustness in 

practical applications. 

 

 
 

Fig. 1. An illustration of overall framework. 

The Multi-modal Information Based Speech Processing 

(MISP) Challenge considers the problem of distant multi-

microphone conversational audio-visual wake-up and audio-

visual speech recognition in everyday home environments. 

The challenge consists of two tracks, audio-visual wake 

word spotting track and an audio-visual speech recognition 

track with oracle speaker diarization. All audio data are 

WAV files with a sampling rate of 16 kHz. Each session 

consists of the recordings made by the far-field linear 

microphone array with 6 microphones, the middle-field 

linear microphone array with 2 microphones and the high-

fidelity near-field microphones worn by each participant. 

Video data are distributed as MP4 files with a frame rate of 

25 fps, and each session consists of the recordings made by 

the far-field wide-angle camera and the middle-field high-



definition cameras worn by each participant. Our systems 

are designed for track 2. Figure 1 shows the framework of 

our systems. The front-end includes weighted prediction 

error (WPE) based dereverberation for multi-channel signals 

and multi-channel speech enhancement with guided source 

separation (GSS). Lipreading TCN [12] extracts 512-

dimensional visual features and 80-dimensional FBANK as 

audio features. We use a project layer and sum-fusion for 

multi-modal features to get the audio-visual features. For the 

encoder module, we use channel-wise attention to get 

channel-wise outputs per channel, Av-fusion attention to 

getting audio-visual embeddings, and Channel-wise Av-

fusion attention to learn the contextual relationship across 

channels and modals. For the encoder module, similar to 

WENET [13], the CTC decoder consists of a linear layer, 

transforming the encoder output to the CTC activation. The 

Attention Decoder consists of multiple Transformer decoder 

layers. During the inference stage, the CTC decoder 

generates n-best candidates and then rescore the n-best 

candidates on the attention decoder to get the final result. 

The detailed descriptions of the systems can be found in the 

following sections. 

 

2. FRONT-END PROCESSING 

 

2.1. Dereverberation and Denoising 

 

We used the NARAWPE tool implementation of weighted 

prediction error (WPE) [14] based dereverberation for 

multi-channel signals. 

 

2.2. Multi-channel guided source separation 

 

 
 

Fig. 2. An illustration of GSS framework. 

 

GSS enhancement is a source separation technique 

originally proposed in CHiME-5. GSS aims to separate the 

sources using a pure signal processing approach. An 

Expectation-Maximization (EM) [15] algorithm estimates 

the parameters of a spatial mixture model, and the posterior 

probabilities of each speaker being active are used for mask-

based beamforming. The overall framework of GSS is given 

in Figure 2. The system consists of two stages: (1) a 

dereverberation stage (2) a guided source separation stage. 

The multiple input multiple output version of the WPE 

method was used in the dereverberation stage. Guided 

source separation consists of a spatial Mixture Model and a 

source extraction (SE) component. 

All the 6 channels audios are dereverbed with the WPE. SE 

masks combined with time annotations are served as an 

initialization of the Mixture Model (MM). After iterations, 

the masks representing the target speaker and the inference 

are used to do beamforming. 

 

2.3. Front-end experiments 

 

The whole audio set contains near-field data (NEAR), 

middle-field microphone array data (MIDDLE), far-field 

microphone array data (FAR), and multi-channel enhanced 

data (ENH), totally 4 parts. NEAR data is produced by the 

high-fidelity near-field microphones worn. MIDDLE and 

FAR data are made up of the original 6 microphones far-

field and 2 microphones middle-field audios. ENH data is 

made up of MIDDLE and FAR data enhanced by GSS 

model. The details of the audio set are listed in Table 1. 

 

 
 

Table 1. The details of the audio set, where 1-fold data is 

around 106 hours 

 

We present the front-end results on several datasets. 

First, compared with the Baseline approach CCER of 

61.78%, our implemented four versions yield comparable 

CCER, as listed in Tabel2. From Table 2, we see that using 

the transformer model improved the baseline system's 

performance by about 3% absolute. Data augmentation, 

GSS-based front-end and Av-fusion were individually 

effective for further improvement, and their combination 

provided a significant WER improvement. Finally, we 

obtained more than 29% absolute CCER improvement over 

the baseline results. 

 

 
 

Table 2. comparison between different front-end 

approaches on development set 

 

3. ACOUSTIC MODELS 

 

3.1. Encoder 

 
We use channel-wise [16] encoder to get channel-wise 

outputs per channel. We use the source channel embedded 



features plus the positional encoding are fed into a set of 

weight parameters to create Query (Q), Key (K), Value (V). 

Q and K compute the correlation across time steps within a 

channel multi-head attention. The attention matrix is then 

used to reweight the features of V in each time step 

followed by a feed-forward network to produce the channel-

wise outputs. Similar to the channel-wise encoder, we use 

Av-fusion attention to get audio-visual fusion output. Given 

the channel-wise outputs per channel, the Channel-wise Av-

fusion attention layers to learn the contextual relationship 

across channels and modals. We use the i-th channel to 

create Q, and the Av-fusion encoder outputs to create K and 

V. An illustration of Channel-wise Av-fusion Encoder (CAE) 

is given in Figure 3. 

 

 
(a)                              (b) 

 

 
(c) 

 

Fig. 3. An overview of Channel-wise Av-fusion Encoder 

(CAE). (a) Channel-wise encoder architecture. (b) Av-

fusion encoder architecture. (c) Channel-wise Av-fusion 

Encoder architecture. 

 

3.2 Decoder 

 
For the decoder module, the CTC decoder consists of a 

linear layer, which transforms the encoder output to the 

CTC activation. The attention decoder consists of multiple 

Transformer decoder layers. 

 During the inference stage, the CTC decoder generates n-

best candidates and then rescore the n-best candidates on the 

attention decoder to get the finally result. 

 

4. EXPERIMENTS 

 

We perform our experiments on the MISP2021 audio-visual 

dataset, which contains 110+ hours of audio-visual data. 

The dataset includes 340+ sessions. Each session consists of 

an about 20-minute discussion. The dataset has been split 

into training, development test and evaluation test. For audio 

features, the 80-dimensional FBANK are computed by 

Torchaudio with a 25ms window and a 10ms shift. 

SpecAugment has applied 2 frequency masks with 

maximum frequency mask (F = 10), and 2 times masks with 

maximum time mask (T = 50) to data augmentation. All 

encoders contain 12 blocks, each with 512-dim, 8 attention 

heads, and 2048-dim feed-forward inner-layer. The Decoder 

includes 6 blocks with 8 heads, and the dimension of 

attention and the feed-forward layer was set to 512 and 

2048. The CTC loss and attention loss are combined in the 

training stage, and CTC loss weight is set to 05. The model 

was optimized with Adam, and the learning rate was 

warmed-up for 25000 steps. Finally, we obtain our final 

model by averaging the top-10 best models with a lower loss 

on the development set during training. 

 

 
 

Table 3. Submitted results. 

 

Table 3 shows the result submitted for the MISP 

challenge track 2. The CCER on the eval set of the baseline 

model was 62.74 %. In M2, we used the 3-fold speed 

perturbation for all datasets and MIDDLE and FAR data 

enhanced by the GSS model. In M3, we used M2 encoder to 

initialize the encoder of the Channel-wise Av-fusion 

network and the recognition accuracy was significantly 

improved. 

 

5. CONCLUSION 

 

We proposed combining the guided source separation-based 

(GSS) speech enhancement technique and a novel Channel-

wise Av-fusion encoder (CAE) for multi-channel audio-

visual speech recognition, which can use multi-channel and 

multi-modal input and get significant results. Our final 

result achieved a CCER of 25.07% for the evaluation data, 

with an absolute reduction of 37.67% compared with the 

baseline model. 
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