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ABSTRACT

This technical report describes our submitted system to
task2 of the Multimodal Information Based Speech Process-
ing (MISP) Challenge 2021. Task2 is audio-visual speech
recognition with oracle speaker diarization. Our main tech-
nical points include the traditional and deep learning based
speech enhancement and separation, training data augmenta-
tion via various kinds of techniques, acoustic model fusion,
and K2 based WFST decoding and rescoring. Tested on
the development set and the evaluation set respectively, our
best system has yielded absolute Chinese character error rate
(CCER) reduction of 37.7% and 35.6% compared to the offi-
cial baseline system and ranked the second place among the
submitted systems in the challenge.

Index Terms— speech recognition, neural network, sig-
nal processing, multi-modal

1. INTRODUCTION

In recent years, automatic speech recognition(ASR) for
single-speaker and clean speech has substantially improved,
and it has been widely utilized in meeting transcription, vir-
tual voice assistant, and automatic captioning. However, there
are still some challenges in applying ASR to real-world sce-
narios. Multiple interference, such as multi-speaker speech
overlap, background noise, and reverberation, may occur in
the far-field home and meeting interactive scenarios, causing
the performance of the ASR system to decrease significantly.

Previous studies have mainly focused on extracting the
target speaker’s clean speech from the noisy signal. Multi-
channel speech enhancement techniques such as BeamformIt
[1], weighted prediction Error(WPE) [2] and guided source
separation(GSS) [3] are widely used and show good perfor-
mance.

Since the visual modal is not affected by the noise, au-
thors have investigated the utilization of visual information in
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speech recognition. Traditional audio-visual ASR system fol-
lows a two-stage scheme. A feature extraction method [4] or
a pretrained model [5] is used to obtain visual features, which
are then combined with audio features and fed into the ASR
model. Recently, some methods have been presented to train
the extraction and recognition model jointly and got better
results over the two-stage methods. Besides supervised meth-
ods, the self-supervised learning method achieves the state of
the art performance by predicting the masked units to learn
representation of audio-visual features[6].

However, there is no specific benchmark for audio-visual
speech recognition(AVSR) in complex scenarios. In this
context, the multimodal information based speech process-
ing (MISP) challenge [7] provides the first AVSR dataset
collected in everyday home environments, which aims to
improve the performance of speech recognition systems by
combining both audio and visual modal information.

During the challenge, we established an AVSR system in-
cluding speech separation front-end and speech recognition
back-end, investigated the impact of different front-ends, and
compared the effects of audio-only and audio-visual recogni-
tion back-ends.

2. PROPOSED SYSTEM

2.1. system overview

The dataset used in MISP challenge task2 contains 110+
hours of audio-visual data. The videos in the dataset record
multiple speakers chatting in the living room while the TV
is playing, making speech recognition quite challenging. To
solve this task, we made a rough problem analysis on task2.
Firstly, the core problem of task2 is to recognize the target
speaker’s speech in the context of interfering speech overlap,
reverberation, and background TV noise, so the front-end
which aims to provide high-quality speech is needed. Sec-
ondly, the amount of data that can be used in this competition
is limited, so data augmentation is needed. Thirdly, there
exists time dislocation in far-field speech, so we did some
data clean-up work to make sure time consistency between
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Fig. 1. An illustration of our proposed system on task2.

far and near field speech. And the solutions to the above
are gathered up to build our system. The illustration of our
system is displayed in Fig.1. It briefly depicts our training
and inference process, in which arrows and blocks in white
and gray represent the ASR training and neural network (NN)
based signal processing training process respectively, while
the blue ones are for the whole inference process.

During the inference stage, the far-field data is handled by
traditional signal processing followed with NN based signal
processing model which we chose to use SpEx+ [8]. After
that, the output will be sent to the ASR model which includes
both audio models and audio-video models. When training
NN based signal processing model we use near-field speech
and data provided by signal processing, like WPE, GSS, etc,
for data augmentation and simulation. For concise presen-
tation, we only report one of the trained four SpEx+ mod-
els in the experiment section. And for training ASR models,
we also did a lot of data simulation and augmentation work,
which includes augmentation based on original data, the data
provided by traditional signal processing, and the data pro-
vided by NN based signal processing. Speed perturb as well
as SpecAugment [9] are also taken into use when training the
audio-only ASR model.

2.2. front-end

For the front-end of our system, traditional signal processing
methods including multi-channel WPE (weighted prediction
error) [2] and GSS (guided source separation) [3] were used.

2.2.1. WPE

Reverberation is inevitable in a far-field speech environment
and can degrade the performance of microphone array pro-
cessing methods and ASR. WPE is a commonly used dere-
verberation algorithm, which estimates the late reverberation

and subtracts it from the observed signal. For simplicity, we
used nara-wpe [10] in our system.

2.2.2. GSS

Source separation is essential in multi-speaker scenarios.
Here we applied GSS as our source separation method be-
cause it had neither frequency permutation nor global source
permutation problem. GSS is an offline source separation
method, which is based on a complex Angular Central Gaus-
sian Mixture Model (cACGMM) [11]. GSS avoids solving
the permutation problems by exploiting the source activity
information, which could be derived from the time annota-
tions provided. The source activity information, set as one
or zero depending on whether the speaker is active or not, is
used to guide the parameters estimation of the mixture model.
Furthermore, an additional class is used indicating the back-
ground noise, and its activity information was always set to
be one. Finally, a context was used to reduce the permutation
problem between the target source and the noise.

2.2.3. SpEx+

SpEx+ [8], a single-channel time-domain speaker extrac-
tion network, is used after GSS in our system to make fur-
ther improvements on the separation effect. SpEx+ consists
of speech encoder, speaker encoder, speaker extractor, and
speech decoder as shown in Fig. 2.

Fig. 2. Illustration of SpEx+ network

2.3. back-end

We built our back-end using the ESPnet toolkit [12]. The
architecture of the back-end is shown in fig. 3. We focused on
optimizing the audio-only back-end. Meanwhile, we explored
the gains brought by the audio-visual back-end.
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Fig. 3. The architecture of our speech recognition back-end

2.3.1. end-to-end acoustic models

Fig. 3 shows the whole architecture our end-to-end back-
end models. Our audio-only speech recognition back-end
has an encoder-decoder structure. We used convolution-
augmented Transformer (Conformer) [13] with relative posi-
tional encoding-based self attention as basic encoder block,
and followed the configuration in [12].

As for audio-visual speech recognition, inspired by [14],
we add an extra conformer-based visual encoder to the audio-
only back-end. For audio modal of our backend, we extracted
80-channel filterbanks features computed from a 25ms win-
dow with a stride of 10ms. For visual modal of our backend,
we use a lipreading model pretrained on LRW-1000 dataset
[15] to extract 512-dimensional visual features as input to the
video encoder. The structure of the video encoder is similar to
the audio encoder mentioned above. In the following audio-
visual experiments, we simply concatenated visual and audio
features and feed them into the decoder. We also adopt a sim-
ple model fusion strategy. We select the nine best models and
get their utterance-level output scores. For each utterance, we
choose the output text with the highest score as the final text.

2.3.2. WFST based decoding

Normally, we use beam search based decoding as in the ES-
Pnet default setting, in which the final score is the weighted
sum of encoder score, decoder score, and neural network lan-
guage model score. To make full use of the n-gram model and
improve the decoding speed. We introduce WFST (Weighted
Finite-State Transducer) based decoding into the end-to-end
model. The decoding WFST graph is made in the same way
as[16]. We get n-best from WFST based decoding. After that,
nbest will perform rescoring. Decoder score and neural net-
work based language model score are added with AM score
and LM score from the WFST to generate the final score.

The WFST based decoding was implemented by K2
framework [17]. The entire decoding process runs on the
GPU fast. From Table 1 we can find the TLG based decod-
ing with rescoring results is better than ESPnet default beam
search decoding. Since the WFST based decoding introduces
more decoding parameters, we do not have enough time for
parameter search. So the final submitted result excluded
WFST based decoding.

Decoding method Far-field development set

beam search 30.9
TLG WFST 29.4

Table 1. Performance of our K2 WFST based decoding.

3. EXPERIMENTAL RESULTS

3.0.1. data clean-up

Our data clean-up contains overlap check and far-near align-
ment. Overlap check is to count the number of speakers in
each utterance based on the textgrid the challenge offers. Do-
ing far-near alignment, we filtered out the utterance whose
far and near-field data were misaligned in time based on the
cross-correlation function to ensure the audio for training
ASR can correspond to the text.

3.0.2. front-end comparison

Here we compare three kinds of front-ends. The first one
is multi-channel WPE followed by BeamformIt [1] (WPE +
BeamformIT) which is the official baseline. The second one
is GSS, while the third one is SpEX+ following GSS (GSS
+ SpEx+). Here GSS denotes the system in [3] containing
WPE, separation and post-processing modules. The SpEx+
model was trained using 500-hour data generated by mixing
the single speaker utterances processed by GSS. The speaker
reference was also processed by GSS. Table 2 compares the
CER results of the far-field development and evaluation sets
using the same back-end model. The “GSS + SpEx+“ method
performed best and was used for submission.



Front-end Development set Evaluation set

WPE + BeamformIT 43.5 46.2
GSS 29.5 28.4
GSS + SpEx+ 29.0 28.2

Table 2. CERs of three front-ends on the same back-end.

3.0.3. back-end comparison

For back-end training, data augmentation was applied. We
simulated far-field speech with near-field data, enhanced or
separated the middle- and far-field data with methods includ-
ing IVA, BeamformIT, WPE, GSS as well as SpEx+. We con-
ducted experiments on two datasets: Train-base and Train-all.
Train-base is the official train dataset processed by WPE and
BeamformIt. Train-all is a combination of all augmented data
mentioned, with a total duration of 3000 hours. The former
dataset is used to compare our systems with the official back-
end, and the latter is used to explore the best performance of
our proposed back-end.

Table 3 shows the performance of our audio-only(A) and
audio-visual(A-V) back-ends. When trained on the same
dataset Train-base, our A and A-V back-ends outperformed
the official baseline back-ends by absolute 4.1 % and 3.7 %,
respectively on the development set. Visual information helps
the A-V back-end achieve a better result (58.1% vs. 58.9%)
on the same set. When trained on Train-all, our results were
significantly better than the baseline. Results on Eval-FE set
show that our back-end could still gain 0.7 % from visual
information (28.59% vs. 29.30%), but we did not get consis-
tent results on Dev-FE set. It is probably due to the different
distribution of the two sets. The best result we submitted is
a fusion of 9-best models, which achieved 27.17% on the
evaluation set, while the official baseline only got 62.74% on
the same set.

Back-end Data Dev Dev-FE Eval-FE

Official A Train-base 63.0 - -
Official A-V Train-base 61.8 - -

Ours A
Train-base 58.9 49.2 46.16
Train-all 41.9 27.0 29.30

Train-all+Dev-FE 40.4 22.0 28.90

Ours A-V Train-base 58.1 51.2 51.69
Train-all 41.3 27.5 28.59

model-fusion - - 24.1 27.17

Table 3. Performance of our audio-only back-end (A) and
audio-visual (A-V) back-ends in terms of CER[%]. “Dev“
means development data processed by WPE and BeamformIt,
while “Dev-FE“ and “Eval-FE“ means data processed by our
best front-end. The last line was submitted.

To explore the impact of video quality on the A-V back-
end, we also conducted experiments on middle-field Train-

base dataset. As we can see from the results in Table 4, A-V
back-end achieved a noticeable boost of 3.2% (4.0 vs. 0.8) on
the visual information gains with middle-field video, which
indicates that A-V ASR needs high-quality videos.

Back-end Far-field Middle-field

Ours Audio 58.9 49.1
Ours A-V 58.1 45.1

Table 4. Performance of A-V model on far-/middle- field
datasets with official front-end of WPE and BeamformIT.

4. CONCLUSION

This technical report proposes our submission to task2 of the
MISP 2021 challenge. Our work includes the investigation
of different speech enhancement front-end and comparison
of audio-only and audio-visual speech recognition back-ends.
Our proposed AVSR system improves against the baseline
with an absolute reduction of 35.6 % on the evaluation dataset
and ranks 2nd out of 10 participated systems in the challenge.
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