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ABSTRACT

This technical report describes the details to the strategy we
adopted for Task 1 in the MISP Challenge 2021. In this work,
we proposed a multimodal wake-up word detection model
that handles the audio and the visual input to determine the
presence of a predefined word. This involves the use of the
extracted latent representation from a trained multi-channel
audio keyword spotting and a video classification model with
a shallow fusion to predict the outcome of our task. To al-
low a more robust performance under the noisy and far-field
environment, curriculum learning based on the distance and
the level of the augmented noise is exploited with increas-
ing difficulty in multiple stages. Moreover, we applied the
weighted prediction error (WPE) for speech dereverberation
to enhance our utterance for a better learning. Lastly, we built
a separate of two system with different audio model, namely
with temporal-convolution (TC-ResNet) and ConvMixer and
we take the average of the predictive score on two system.
Our experimental result for team ALISPEECH has achieved
top 6 on the leaderboard with a score of 0.109.

Index Terms— multi-channel keyword spotting, noisy
far-field, video classification, multi-modality

1. INTRODUCTION

The rapid advancement of technology has allowed the interac-
tion of humans and machines via voice command. Numerous
voice assistant applications, such as the Apple Siri, are inte-
grated into consumer electronics and household appliances.
To activate such applications, a keyword spotting or wake-up
word detection model is established to determine the presence
of a predefined keyword in a given utterance. Formally, key-
word spotting (KWS) [1] can be defined as the task of identi-
fying keywords in the audio streams comprising speech. With
the rising use of voice applications, keyword spotting task has
become increasingly challenging due to the increased demand
for a more robust model for unfavourable acoustic conditions

(far-field sound, background noise, and reverberation) and
multiple person conversations with significant voice overlap.
Motivated by this, the Multimodal Information Based Speech
Processing (MISP) Challenge 2021 aims to tackle these prob-
lems by introducing additional modality information (such
as video or text), yielding better environmental and speaker
robustness [2] in a realistic environment. Besides, human
speech perception is bimodal by nature since it relies on both
auditory and visual information. Keyword spotting can ben-
efit from combining visual and audio information to enhance
their performance. This is also known as the audio-visual key-
word spotting [3] or multi-modality keyword spotting. In task
1, MISP2021 considers the following scenario: several peo-
ple are chatting while watching TV in the living room, and
they can interact with a smart speaker/TV. With the multi-
modality data collected from the microphones and cameras,
we build an audio-visual keyword spotting (KWS) model to
carry out the task.

In this work, we proposed methods for adapting our
model to the background noises and reverberations, i.e. noisy
and far-field environment. We were inspired by [4] and pro-
posed a novel multi-channel ConvMixer with centroid based
keywords as our wake-up word audio model for extracting
features from the multi-channel audio data. In order for the
model to perform well in noisy environments, we applied
weighted prediction error (WPE) [5] for speech dereverber-
ation to enhance audio data before training. In addition,
we trained the model with the strategy of curriculum-based
multi-condition training that surpasses the vanilla multi-
condition learning. Thus, our model is more robust to noise
and achieves better performance in noisy environment. On
the other hand, since visual information is not affected by
acoustic distortions, we propose a pre-trained visual front-
end to extract feature vectors from video clips. We then
pass them through Transformer layers to capture temporal
information, after adding positional encoding. Finally, the
extracted audio-visual data is fused [1] in order to make a
determination about the presence or absence of a keyword.



The rest of the report is organized as the following. Sec-
tion 2 describes the network architecture, the Weighted Pre-
diction Error, the Keyword Centroid, and curriculum learning
methods. Section 3 shows the experimental results and anal-
ysis. Finally, we conclude the work in Section 4.

2. PROPOSED METHOD

This session introduces an efficient strategy design for the
task of Audio-Visual Keyword Spotting. First, in section 2.1
we present a modified version of ConvMixer and TC-ResNet
for multi-channel far-field spoken keyword spotting. Second,
we demonstrate how to use Transformer-based method to ex-
tract the feature from video clips in section 2.2. Finally, we
present the fusion of audio and video feature for the purpose
of predicting the result in section 2.3.

2.1. Audio Stage
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Fig. 1. Multi-channel ConvMixer

2.1.1. Multi-channel ConvMixer

Our multi-channel ConvMixer networks expands from pre-
vious work in [4]. For a single-channel ConvMixer, the
architecture is divided into three main sections, namely the
pre-convolutional block, the convolution-mixer block, and
the post-convolutional block. We designed our pre- and
post-convolutional blocks using the same neural layers of a
1-dimensional DWS, batch normalization followed by the
swish activation. To preserve the dimension from the pre-
vious time frame, each of the following blocks is convolved
with a different kernel size.

The ConvMixer block takes the previous channel X time
feature and passes it through the 2D convolutional sub-block
for frequency domain extraction. This creates a third dimen-
sion that expresses the rich information from the frequency
domain. To maintain the shape from the previous input, we
employed a pointwise convolution to compress it back to the

original shape. Then, we implemented the temporal domain
feature extraction with a 1-dimensional DWS block. The
product of these two operations will result in frequency and
temporal rich embeddings. Following that, we constructed
a mixer layer to enable information to flow over the global
feature channel. Here, we added an additional audio channel
mixing on top of the previous single-channel model. Lastly,
we added skip connections from the previous output and the
2D feature connecting to the output of the block.

2.1.2. TC-ResNet

We adopt TC-ResNet [6] as a secondary KWS system. It is
built based on ResNet, one of the most widely used CNN
architecture but utilize 3x 1 kernels for first layer and 9x1
kernels for the other layers. Temporal Convolution which is
1D convolution along the temporal dimension is applied on
the network. It is proven to increase the effective receptive
field in comparison to the original ResNet that computes with
strided convolutions and without dilated convolutions. This
audio model will be later fused with the video model simi-
lar to our ConvMixer audio-visual model to create our second
KWS system. Subsequently, we will perform an average en-
sembling to obtain our final predictive score.

2.1.3. Keyword Centroid

We propose training the network to learn the spatial relation-
ship of the posterior latent space where all input utterances are
projected. When a target input is given, an embedding vector
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can be extracted with a trained model as in figure 2.1.3. By
computing distances between the embedding vector and each
centroid vectors, we can classify the given utterance with the
posterior space distance and the representation features. Our
loss function is the sum of the normal classification loss func-
tion and the centroid loss function.

2.1.4. Weighted Prediction Error(WPE)

Background noise and signal reverberation caused by enclo-
sure reflections are the two primary impairments in acous-
tic signal processing and far-field speech recognition. This



work addresses signal dereverberation techniques based on
WPE [5] for speech recognition and other far-field applica-
tions. WPE is a compelling algorithm to blindly dereverber-
ate acoustic signals based on long-term linear prediction. We
used WPE [5] and SpecAugment [7] to pre-process our data.

2.1.5. Curriculum Based Multi-condition Training

To enhance the noise robustness of our model, the curricu-
lum learning based on the distance level and noisy environ-
ment is employed as a training strategy. To execute the train-
ing process, we divide it into three progressively harder steps.
Noise is added using the provided official dataset, which can
be found in the noise folder. This involves the following pro-
cedures:

 Stage 1: Training with near-field audio + official noise
(clean, 5 dB)

e Stage 2: Training with middle-field audio + official
noise (clean, 0 dB)

» Stage 3: Training with far-field audio + official noise
(clean, -5 dB)

2.2. Video Stage

In this section, we will introduce our proposed method with
its overview as the figure 2.2. Following that, we will describe
each stage of the pipeline for keyword spotting in lip videos.
It comprises a video front-end, transformers, and prediction
heads for multi-layer perceptrons (MLP).
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Fig. 3. Video model architecture

2.2.1. Model Architecture

Our model is fed with video clips in which we used to spot the
keyword ‘Xiao T Xiao T”. With the input video frames, the vi-
sual front-end will extract low-level visual features. We then
pass them through Transformer layers to capture the tempo-
ral information, after adding positional encoding. To predict
the probability of the keyword being present in the video de-
rived from the output feature, the two multi-layer perceptrons
(MLP) [8] heads are used for binary classification and local-
ization of the keyword that is shared throughout all the video
output states from the Transformer respectively.

2.2.2. Data preprocessing

To facilitate the extraction of the content from the video, input
video data was converted into sequential frames whereas the
massive amount of images makes it difficult to employ video
information for further processing. To eliminate redundant in-
formation, images were cropped and resized to a fixed size of
96 x 96 which only focused on the region of interest around
the mouth. The frames are then transformed to grayscale and
normalized with respect to the mean and variance of the entire
dataset.

2.2.3. Video front-end

By applying the processed frames, the pre-trained visual
front-end is implemented to extract feature vectors. It utilizes
the spatio-temporal convolutional layers that include a con-
volutional layer with 64 filter maps of 3D convolution with a
kernel size of 5 x 7 x 7, Batch Normalization (BN) [9], Rec-
tified Linear Units (ReLU) and a spatio-temporal maxpooling
layer which extracted feature maps pass to reduce their spatial
size. It is vital with the benefit of capturing the short-term
dynamics of the region of interest. Followed by the video
front-end, the feature maps then pass through the residual
network (ResNet) [10] with 18-layer identity mapping ver-
sion, the ResNet gradually reduces the spatial dimension of
its output until each time step produces a single dimensional
tensor.

2.2.4. Transformer

Instead of using convolutional neural networks (CNNs) or
long short-term memory (LSTM), a Vision-Transformer [11]
model was selected as the back-end of our model, since the
Transformer model has been applied widely in the areas of
natural language processing [12, 13] and visual learning [14,
15] with its relatively simple structure but capable of achiev-
ing competitive performance.

2.3. Fusion Stage

We propose a feature-level fusion model. Specifically, speech
and visual features are concatenated before their joint clas-
sification using a neural network model. As in the figure,
both latent representations input to the full connected layers
as shallow fusion, then output the class prediction.

3. EXPERIMENTS

3.1. Experiment Setting

Datasets and metrics. We evaluate the proposed method on
the datasets provided by MISP challenge 2021, it includes
three datasets: training, development, and evaluation. We
have a total of 124.79 hours of data. There are more than 300
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speakers with different Mandarin accents, and all data was
collected in over 30 real-world rooms. If the wake-up word is
included in the sample, it is considered as a positive sample,
otherwise it will be regarded as a negative sample. Addition-
ally, performance is evaluated by the sum of the false alarm
rate (FAR) and the false reject rate (FRR). This score will be
used as the judging criteria.

Implementation Details. For audio input features, we use
40-dimensional log Mel spectrograms with length of 200ms.
Audio will be padded with zeros if the time length is shorter
than 200ms or it will be trimmed if it exceeded 200ms. Dur-
ing training, we augment data to get a more generalized
model. In the time dimension, we randomly shift each input
feature in the range of -10 to 10. We also use Specaugment
[7] with two frequency masks and two temporal masks with
mask parameters of 25 and 7, respectively. The number
of epochs is 30 for the first training stage, 50 for the sec-
ond training stage, and 50 for the third training stage using
AdamW optimizer with weight decay of Se-7 and mini-batch
size of 64.

For video input information, we adopt the pre-trained fea-
ture front-end using transformers for lip reading, to obtain
faster training time, the pre-computed visual features for each
backbone has been applied. Based on it, we remove the fully-
connected classification layer, and add transformers and two
prediction heads to classify and localize the keyword. The to-
tal epoch number is 50 with mini-batch size of 4 for the input
dimension of 256. We use ADAM as the optimizer with the
constant learning rate of 8e-6 and weight decay of Se-4.
Result. We have achieved the top 6 in the leaderboard with
the score of 0.109.

4. CONCLUSIONS

In this work, we designed a system to achieve two goals; 1)
Adapting the noisy far-field environment and 2) Fusion the
visual information. To design an efficient Keyword Spotting
model, we suggest a multi-channel version of ConvMixer [4]

with Keyword Centroid Loss. Besides, we further enhance
the data by WPE [5] and Specaugment [7]. Additionally, to
improve the noise robustness of our model, curriculum learn-
ing based on the distance level and noisy environment are em-
ployed as a training strategy. We set a visual feature pipeline
comprises of a video front-end, transformers, and prediction
heads for multi-layer perceptrons (MLP). Finally, we deploy
a fusion stage to combine features with audio and video to
predict. We evaluate our proposed system on the MISP2021
dataset. We are the TOP 6 group in the leaderboard. And we
get the score of 0.109.
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