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ABSTRACT

This paper describes our audio-quality-based multi-strategy ap-
proach for the audio-visual target speaker extraction (AVTSE) task
in the Multi-modal Information based Speech Processing (MISP)
2023 Challenge. Specifically, our approach adopts different extrac-
tion strategies based on the audio quality, striking a balance between
interference removal and speech preservation, which benifits the
back-end automatic speech recognition (ASR) systems. Experi-
ments show that our approach achieves a character error rate (CER)
of 24.2% and 33.2% on the Dev and Eval set, respectively, obtaining
the second place in the challenge.

Index Terms— target speaker extraction, automatic speech
recognition

1. INTRODUCTION

The objective of target speaker extraction (TSE) is to extract the
speech of a specific speaker from complex acoustic environments,
including background noise and multiple speakers interference. Var-
ious research has been conducted in this field [1, 2]. These meth-
ods typically depend on pre-recorded registration audio of the target
speaker, a prerequisite that hinders their widespread practical util-
ity [1]. Moreover, these methods are often evaluated by audio qual-
ity metrics, which may lead to over-enhancement for the following
ASR task [3]. In response, the MISP2023 challenge [1] introduces
the readily accessible lip movements video data as prior informa-
tion for the TSE tasks, instead of target speaker registration audio.
To ensure the efficacy of the front-end extracted audio for back-end
ASR systems, the challenge incorporates a frozen-parameter ASR
system [4] to evaluate the character error rate (CER) of the processed
audio.

To cope with such audio-visual target speaker extraction (AVTSE)
task, we first use DNSMOS OVRL [5] score to categorize the au-
dio into three quality-based groups, subsequently implementing
different extraction techniques for each category. Secondly, a multi-
channel fusion method [2] is used to recover the speech signal lost
in previous extraction by GSS [6], and further perform TSE with an
MEASE [1] network using lip movements video data. Thirdly, we
utilize the DRC-NET model [7] for noise reduction, modifying the
original spectrum mapping approach in [7] to a masking approach,
which balances the noise reduction and speech distortion. On the
official Eval set, our approach achieves a CER of 33.2%, securing
the second position in the final assessment.
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2. APPROACH
2.1. Network Architecture
For audio of varying quality levels, a crucial consideration is whether
to prioritize speech preservation with minimal distortion, focus more
on noise reduction, or strike a balance between them. Consequently,
we classify audio into three categories based on the DNSMOS
OVRL scores: those scoring above 1.5 + γ are classified as high
quality, scoring between 1.5 − γ and 1.5 + γ are considered as
medium quality, and any below 1.5− γ are named low quality. One
point five(1.5) is the DNSMOS OVRL score of the baseline system
on Dev set [1], which we consider as an intermediate value that
differentiates audio quality. The threshold γ is a hyperparameter
which is tuned from {0.1, 0.2, 0.3, 0.4, 0.5} in our experiments,
and we find the best results when γ = 0.3. Different processing
strategies are then applied to each category, as shown in Fig.1(a).

For high quality audio, we directly apply the guided source
separation (GSS) method [6] as shown in Fig.1(d), which is advan-
tageous for its minimal speech distortion during the extraction of
multi-speaker audio. However, for medium or low quality audio, the
GSS will mistakenly lose the speech signal of the target speaker and
has a poor effect on removing interference. Therefore, some other
methods need to be applied to enhance the speech signal after pre-
liminary extraction by GSS.

For medium quality audio, we add a fusion block for combin-
ing multi-channel information and making up for the missing speech
signal caused by GSS, and leverage the MEASE network [1] for fur-
ther extraction. As illustrated in Fig.1(b), the fusion block combines
8-channel input audio consisting of far-field 6-channel audio, its av-
erage, and the GSS processed audio into a single-channel output.
The 8-channel audio is firstly normalized to match a loudness of -
25db. Subsequently, it undergoes a frequency down-sampling (FD)
layer to merge magnitude information from multiple channels. The
FD layer, structured similarly to [2], includes gated convolutions, cu-
mulative layer normalization (cLN), and PReLU. The output of the
FD layer is used as a mask on the averaged magnitude of the far-field
6-channel audio. The masked time-frequency domain audio is then
converted back to the time domain and fed into the MEASE network,
which uses the target speaker’s lip movements video as prior infor-
mation of the target speaker and further extracts the target speech
from the audio. Its structure is similar as the official baseline [1],
except that the audio and video embedding extraction modules are
changed into a 34-layer ResNet structure without pre-training.

For low quality audio, we use the DRC-NET [7] network to en-
hance the single-channel audio after GSS, as illustrated in Fig.1(c),
which is good at effectively removing noise and reverberation in-
terference. To minimize speech distortion due to excessive speech



enhancement, we modify the original network structure from spec-
trum mapping to masking, opting for a CRM mask [8] that incorpo-
rates phase information. The rest of the network structure remains
consistent with that described in [7].
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Fig. 1: Details of (a) Overview of our audio-quality-based multi-
strategy approach; (b) TSE for Medium Quality audio; (c) TSE for
Low Quality audio and (d) TSE for High Quality audio.

2.2. Training Process
The model training is divided into two stages, using simulation data
for pre-training of the front-end system and followed by the joint
training with the back-end ASR system on the real data.

In the first stage, we use the mean square error (MSE) loss LMSE

for the fusion block and MEASE network (i.e. medium quality case).
When training the DRC-NET network (i.e. low quality case), the
loss function is denoted as LDRC-NET:

LDRC-NET = α
∥∥∥|Ŝ| − |S|

∥∥∥
2
+(1−α)

∥∥∥Mag(Ŝ)− Mag(S)
∥∥∥
2

(1)

where, S and Ŝ denote the target and the estimated spectrum, Mag(·)
is the operation of extracting the magnitude spectrum, and ∥·∥2 is the
L2 norm. α is set to 0.5.

In the second stage, the loss function LASR applied for joint train-
ing with the back-end ASR system is consistent with that described
in [1], which is the combination of CTC loss and the CE loss.

3. EXPERIMENTS
3.1. Datasets
We utilize the MISP2023 Challenge dataset for the experiments. The
simulation method for the far-field 6-channel data is similar to that
described in [1]. During the fist training stage, we perform dynamic
noise and speech mixing, randomly adding noise ranging from -10db
to +20db to the clean audio and combining it with other near-field
speaker audios. Then, reverberation is added according to room di-
mensions to simulate far-field 6-channel audio. The audio data used
for the second training stage, joint training with the back-end ASR
model, is real-scene far-field 6-channel audio. All lip movements
video data used as prior information in speech extraction is recorded
with mid-field cameras. For model inference, both the Dev set and
Eval set are from the official MISP 2023 challenge dataset.
3.2. Experiment Setup
For the short-time fourier transform (STFT), we use a window length
of 32ms and a hop size of 10ms, with an STFT length of 512. The
training is conducted using the Adam optimizer, with an initial learn-
ing rate set at 0.001. The learning rate will be halved if the validation
loss has no decrease for 3 epochs.

In the fusion block’s FD layer, the gated convolution has a kernel
size and stride of (2, 3) and (1, 2) respectively, corresponding to the

time and frequency axes. In the DRC-NET, the encoder and decoder
each contain 4 layers of DRC blocks and DeDRC blocks. Within
each block, kernel size and stride of gated convolution are (1, 5) and
(1, 2) respectively, and the channel dimensions are {2, 32, 32, 64}.
Table 1: Detailed CER (%) and DNSMOS OVRL results of different
approaches on the official Dev set.

System CER % ↓ DNSMOS ↑
GSS 26.4 1.35
MEASE (Baseline) 26.3 1.50
Fusion + MEASE 25.6 1.42
DRC-NET 27.8 1.86
Our Approach (NPU-MSXF) 24.2 1.47

Table 2: Detailed CER (%) and DNSMOS OVRL results of different
approaches on the official Eval set.

System CER % ↓ DNSMOS ↑
GSS 37.6 1.31
MEASE (Baseline) 36.1 1.42
Our Approach (NPU-MSXF) 33.2 1.41

3.3. Results
Ablation experiments on the Dev set, detailed in Table 1, evaluate
each component’s efficacy. Results from DNSMOS OVRL score in-
dicate that post-GSS neural networks integration reduces noise, but
at the cost of introducing some distortion to speech. Hence, employ-
ing varied extraction strategies for different audio qualities is cru-
cial, leading to the lowest CER in Dev set. The fusion block, when
combined with the MEASE network, achieves an enhanced CER
compared to using the MEASE network alone, evidencing the fu-
sion block’s effectiveness in integrating multi-channel information.
In the final evaluation, presented in Table 2, our approach signifi-
cantly outperforms GSS and MEASE models in CER, securing the
second place in the MISP2023 challenge. It is worth noting that a
higher DNSMOS OVRL score does not always align with a lower
CER, highlighting that for front-end enhancement models serving
back-end ASR systems. In other words, when serving back-end ASR
systems, audio quality metrics cannot be used alone for evaluation.
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