
THE NPU-ASLP SYSTEM FOR AUDIO-VISUAL SPEECH RECOGNITION
IN MISP CHALLENGE 2022

Pengcheng Guo†, He Wang†, Bingshen Mu, Ao Zhang, Peikun Chen

Audio, Speech and Language Processing Group (ASLP@NPU), School of Computer Science,
Northwestern Polytechnical University, Xian, China

ABSTRACT
This paper describes our NPU-ASLP system for the Audio-Visual
Diarization and Recognition (AVDR) task in the Multimodal
Information Based Speech Processing (MISP) Challenge 2022.
Specifically, the weighted prediction error (WPE) and guided source
separation (GSS) techniques are used to reduce reverberation and
generate clean signals for each single speaker first. Then, we explore
the effectiveness of Branchformer and E-Branchformer based ASR
systems. To better make use of the visual modality, a cross-attention
based multi-modal fusion module is proposed, which explicitly
learns the contextual relationship between different modalities. Ex-
periments show that our system achieves a concatenated minimum-
permutation character error rate (cpCER) of 28.13% and 31.21% on
the Dev and Eval set, and obtains a second place in the challenge.

Index Terms— Multimodal, Audio-Visual Speech Recognition

1. INTRODUCTION

With the advances of deep learning, lots of progress has been
achieved for automatic speech recognition (ASR) and its perfor-
mance has been improved significantly [1, 2]. However, ASR
systems are still susceptible to performance degradation in real-
world far-filed scenarios like meetings or home parties, due to the
background noise, inevitable reverberation, and multiple speakers
overlapping [3]. To achieve a robust ASR system in such challeng-
ing acoustic environments, plenty of studies focus on combining
a separate speech enhancement module with the ASR model or
an end-to-end optimization of all components. In addition, audio-
visual based ASR (AV-ASR) training has also drawn immense
interest when both auditory and visual data are available, since the
additional visual cues, such as facial/lip movements, could provide
complementary information and increase the model’s robustness,
especially in noisy conditions.

Inspired by this, the first Multimodal Information Based Speech
Processing (MISP) Challenge [4, 5] was launched, which targeted
exploring the usage of both audio and video data in distant multi-
microphone conversational wakeup and recognition tasks. Different
from the first MISP Challenge that provides oracle speaker diariza-
tion results, this year, the MISP Challenge 2022 removes such prior
knowledge and extends previous tasks to more generic scenarios,
which are audio-visual speaker diarization (AVSD), and audio-visual
diarization and recognition (AVDR).

This study describes our system for the AVDR task (Task2) of
the MISP Challenge 2022. To develop a robust AV-ASR system,
we first explore several commonly used data processing techniques,
including the weighted prediction error (WPE) [6] based derever-
beration, guided source separation (GSS) [7] and data simulation.
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Fig. 1: The flow chart of data processing and simulation. N× refers to N
times the original 106 hours Near data provided by the challenge.

Then, advanced end-to-end architectures like Branchformer [8] and
E-Branchformer [9] are used to build the basic ASR systems with the
joint connectionist temporal classification (CTC)/attention training.
To better make use of the visual modality, we propose a cross-
attention based multi-modal fusion module, which explicitly learns
the contextual relationship between different modalities. After com-
bining the results from various systems by the Recognizer Output
Voting Error Reduction (ROVER) technique, we achieve a final
concatenated minimum permutation character error rate (cpCER) of
28.13% and 31.21% on the Dev and Eval set, obtaining a second
place in the challenge competition.

2. PROPOSED SYSTEM
2.1. Data Processing and Simulation
Fig. 1 shows our data processing and simulation progress. Both Mid-
dle and Far data are first pre-processed by the WPE [6] and GSS [7]
algorithms to obtain the enhanced clean signals of each speaker.
Then, an Augmentor module conducts speech perturbation on the
combination of enhanced data and original Near data, resulting in
about 9-fold training data1. For the simulation part, the MUSAN
corpus [10] and the open-source pyroomacoustics toolkit2 are ap-
plied to generate background noises and room impulse responses
(RIRs). The total training data is about 1300 hours.
2.2. Audio based Speech Recognition
For the audio based ASR systems, we investigate the effectiveness
of the recently proposed Branchformer [8] and E-Branchformer [9]
architectures. The Branchformer [8] encoder adopts two parallel
branches to capture various ranged contexts. While one branch em-
ploys self-attention to learn long-range dependencies, the other
branch utilizes a multi-layer perceptron module with convolu-
tional gating (cgMLP) to extract fine-grained local correlations
synchronously. In [9], Kim et al. enhanced Branchformer by apply-
ing a depth-wise convolution based merging module and stacking an
additional pointwise feed-forward module, named E-Branchformer.
2.3. Audio-Visual based Speech Recognition
Fig. 2 shows the overall framework of our AV-ASR model. In detail,
each modality is first processed by a frontend module to extract fea-
tures. The visual frontend is a 5-layer ResNet3D module, while the

1N-fold data refer to N times the original 106 hours Near data.
2https://github.com/LCAV/pyroomacoustics
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Fig. 2: An overview of the proposed AV-ASR model.

audio frontend is a 2-layer convolutional subsampling module. Fol-
lowing the frontends, two modal-dependent Branchformer encoders
are used to encode input features as latent representations. The pro-
posed fusion module consists of 2 cross-attention layers, each of
which takes one modality as the Query vector and the other modality
as Key/Value vectors. With the help of cross-attention layers, each
modality could learn the related and complementary context from
the other modality. Finally, representations from different modali-
ties are concatenated together to compute CTC loss and fed into the
Transformer decoder to compute cross-entropy (CE) loss.
2.4. Inference Procedure
During the inference, the Eval set is first segmented by a speaker
diarization (SD) model, enhanced by WPE and GSS, transcribed by
our ASR or AV-ASR models, and rescored by a Transformer based
language model (LM). Our SD model is implemented based on the
released baseline system3 by replacing the long short-term memory
(LSTM) based diarization module with Transformer and the speaker
embedding module with an ECAPA model [11] pre-trained on all
available speaker recognition and verification data in the challenge
homepage4. The diarization error rates (DERs) of baseline SD and
our SD are 13.09% and 9.43% on the Dev set, respectively. Finally,
results from different systems are fused by the ROVER technique.

3. EXPERIMENTS
3.1. Setup
All of the models are implemented with ESPnet [12]. For the audio
based ASR systems, we follow the ESPnet recipe to set the frame-
work: Enc = 24, Dec = 6. Since the additional modules increase
the parameters of E-Branchformer, we also train an E-Branchformer
Small (Enc = 16) for a fair comparison. For AV-ASR systems, the
visual front is a 5-layer ResNet3D module, whose channels are 32,
64, 64, 128, 256 and kernel size is 3, the visual encoder is a 12-layer
Branchformer, and others are the same as ASR systems. During the
training, the audio branch is initialized by well-trained ASR models.
3.2. Results
Table 1 presents the cpCER results of various ASR systems. It can
be seen that all of our models gives better results over the official
baseline and achieve up to 40% absolute cpCER improvement due to
the enhanced dataset and advanced model architectures. Comparing
M1 and M2, the data simulation gives a noticeable gain. Besides, E-
Branchfomer Small (M3) obtains similar results with Branchformer

3https://github.com/mispchallenge/misp2022 baseline
4https://mispchallenge.github.io/mispchallenge2022/extral data.html

Table 1: The cpCER (%) results of ASR systems on the Dev set. The Dev set
is segmented by oracle timestamps, baseline SD model, and our SD model.

Sys. Model Oracle Timestamps Base SD (DER=13.09%) Our SD (DER=9.43%)
B1 Official Baseline 66.07 N/A N/A
M1 Branchformer 26.60 34.04 30.67
M2 - remove Simu Data 27.90 35.00 31.72
M3 E-Branchformer Small 26.80 33.83 30.61
M4 E-Branchformer 26.50 33.73 30.49

Table 2: The cpCER (%) results of AV-ASR systems on the Dev set.

Sys. Model Oracle Timestamps Our SD (DER=9.43%)
M5 AV-Branchformer (init by M2) 26.90 30.85
M6 AV-Branchformer (init by M1) 25.70 29.73

(M1) when model sizes are the same, and increasing the encoder
block of E-Branchformer (M4) gives the best results. When compar-
ing the results in each row, we find that a better SD model could bring
consistent performance improvement. Table 2 shows the cpCER re-
sults of our AV-ASR systems. For AV-ASR, a good initialization of
the ASR branch gives better performance (M5 vs. M6). Comparing
M6 and M1, the incorporation of visual modality gives about 0.9%
cpCER improvement. After fusing systems of M1, M3, M4, M5 and
M6, we obtain a cpCER of 28.13% and 31.21% on the Dev and Eval
set (w/ our SD), achieving second place in the challenge.

4. CONCLUSION
In this study, we describe our system for the Task2 of the MISP
2022 Challenge. Our effort includes data processing and simulation
strategies, investigation of advanced architectures, and a novel cross-
attention based multi-modal fusion model. By combining various
systems, we get a cpCER of 31.21% on the final Eval set, obtaining
a second place in the challenge.
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