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ABSTRACT

This paper describes the system developed by the WHU-Alibaba
team for the Multi-modal Information Based Speech Processing
(MISP) 2022 Challenge. We extend the Sequence-to-Sequence
Target-Speaker Voice Activity Detection framework to detect mul-
tiple speakers’ voice activities from audio-visual signals simulta-
neously. The final system achieves a diarization error rate (DER)
of 8.82% on the evaluation set of the competition database, which
ranks 1st in the speaker diarization track of the MISP 2022, ICASSP
Signal Processing Grand Challenge.

Index Terms— MISP Challenge, Audio-visual Speaker Di-
arization

1. INTRODUCTION

Speaker diarization is the process of detecting speakers’ voice activ-
ities in conversational data. Many classical methods are proposed,
including clustering-based, end-to-end neural diarization, target-
speaker voice activity detection methods and following modifica-
tions [1]. Also, audio-visual methods are explored to take advantage
of different modalities (e.g., AVSD [2]).

This paper extends the Seq2Seq-TSVAD [3] framework to an
audio-visual system, which can handle audio and visual lip-motion
information to detect multiple speakers’ voice activities. Our pro-
posed system obtains a DER of 8.82% on the competition evaluation
set to win first place in the speaker diarization track of the MISP
2022, ICASSP Signal Processing Grand Challenge.

2. SYSTEM DESCRIPTION

Fig. 1 depicts the designed Audio-Visual Seq2Seq-TSVAD frame-
work. The audio front-end model, Conformer, and Speaker-wise
Decoder (SW-Decoder) are the same as the original work [3]. The
differences are described as follows.

We introduce the ResNet18-3D as the visual front-end model to
process each speaker’s lip video. Based on its standard implemen-
tation in Pytorch, there are three modifications: the convolutional
kernel size, stride and output channels of the first stem layer are set
to 7, 2, and 32 without max pooling; Output channels of the residual
blocks are set to {32, 64, 128, 256}; All temporal downsampling op-
erations (pooling/stride) in residual blocks are removed. By adding
the last spatial global average pooling layer, this front-end extractor
finally transforms a sequence of lip images into a sequence of feature
embeddings.
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Fig. 1. The Framework of Audio-Visual Sequence-to-Sequence
Target-Speaker Voice Activity Detection. For clarity, modality-
dependent linear layers are omitted from the plot.

The inputs of TSVAD-based methods usually consist of acous-
tic features and speaker enrollments (e.g., x-vectors). The order
of speaker enrollments determines the corresponding target-speaker
voice activities. As there is no off-screen speaker in the competition
database, we directly utilize lip videos as visual features as well as
enrollments. A set of learnable embeddings represents the relative
identities of input lips and related voice activities, namely target-lip
embeddings. Meanwhile, learnable modality-type embeddings are
initialized to differentiate encoded acoustic and visual features.

Target-lip embeddings, modality-type embeddings and sinu-
soidal positional embeddings are added to construct the new posi-
tional embeddings. After front-end models, two modality-dependent
linear layers map the audio-visual features to the exact dimension
of positional embeddings. Then, the Conformer module takes the
sum of aligned feature sequences and positional embeddings as the
inputs. On the decoder side, target-speaker embeddings in the origi-
nal Seq2Seq-TSVAD model are replaced with the newly introduced
target-lip embeddings. Decoder embeddings are set to zeros.

Let N and D denote the speaker number and feature dimen-
sion. Elip = [e1 . . . eN]T ∈ RN×D and Emod ∈ R1×D denote the
learnable target-lip and modality-type embeddings. Given a training
sample, the outputs from audio and visual extractors can be denoted
as FA ∈ RT2×D and

󰀋
FV

n ∈ RT1×D | 1 ≤ n ≤ N
󰀌

, respectively.
For each FV

n , the corresponding lip-embedding en ∈ R1×D is re-
peated to the length of T1, then added with sinusoidal positional em-
beddings to become part of the final positional embeddings with the
length of T1 × N + T2. The rest dimension computations are the
same as the original Seq2Seq-TSVAD.



3. EXPERIMENTS

3.1. Data

The training data is from the MISP 2022 Challenge, including multi-
channel audio and video data in near, middle, and far fields. We
utilize the NARA-WPE 1 and SETK 2 toolkits for dereverberation
and beamforming to extend available audio channels.

1) Basic Augmentation: Musan and RIRs corpora are applied as
the audio augmentation. Furthermore, input videos undergo each
item of the following procedures with a probability of 0.5: rotation
with an angle range [5, 20]; horizontal flipping; cropping with the
scale range [0.8, 1]; transformation of contrast, brightness, and satu-
ration in the range [−25, 25].

2) Extra Augmentation: When lip videos in a recording are not
enough to fit the pre-set speaker number, each empty input has a
probability of 0.5 to be padded by non-spoken lip videos randomly
extracted from the training data. This way forces the model to dis-
tinguish valid and invalid inputs, namely Negative Sampling. In ad-
dition, we adopt the MixUp [4] method. Let x and y denote the lip
video and voice activities that should be predicted, respectively. In
each mixup, we randomly select the i-th and j-th speakers within a
recording to construct the new training sample as follows:

x̂ = λxi + (1− λ)xj , ŷ = λyi + (1− λ) yj , (1)

where λ ∈ [0, 1] is sampled from the Beta (α,α) distribution. In
practice, we set α = 0.2 and perform the mixup between all within-
recording speakers during model training.

3.2. Training

The model is set to the maximum speaker capacity of 6 and tempo-
ral resolution of 10 ms. The acoustic inputs take 80-dim log Mel-
lterbank energies with a frame length of 25 ms and frameshift of
10 ms. The extraction of lip regions is the same as our previous
work [5], and grayscale videos with a resolution of 88× 88 and FPS
of 25 are adopted as visual inputs. All training samples are split into
8-sec audio and video chunks with a stride of 4 seconds. Then, they
are normalized with a mean of 0 and a standard deviation of 1.

The BCE loss and Adam optimizer are employed to train the
neural network. First, we extract speakers’ speaking and non-
speaking audiovisual corpus from all available training data to per-
form online data simulation. The audio front-end module is frozen
and initialized by its pre-trained speaker embedding model. With
a learning rate of 1e-4 and a warmup of 2000 iterations, the whole
model is trained by fully simulated data for 50 epochs until back-
end convergence. Second, all model parameters are unfrozen to
train around 50 epochs on the real far-field data without simulation.
Finally, the model is fine-tuned around 10 epochs by decreasing the
learning rate to 1e-5.

3.3. Inference

We utilize far-field dereverberation audio and related videos as the
test data. All test samples are split into 8-sec chunks with a 1-sec
stride. Predicted results are stitched chunk by chunk. As a score-
level fusion, multiple predictions from different audio channels and
overlapped chunks are averaged at identical timestamps.

Lastly, we adopt the Oracle VAD provided by the competition
to revise the diarization results as post-processing. The timestamps

1https://github.com/fgnt/nara_wpe
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Table 1. DERs (%) of different systems on the MISP 2022 Database.
The symbol + denotes the cumulative addition of the current method
based on the preceding ones.

System Dev Set Eval Set

Official Baseline [2] 13.09 13.88
Ours with Basic Augmentation 9.07 11.01

+ Negative Sampling 8.41 9.81
+ MixUp 7.84 8.82

marked the VAD as active speech will directly assign a positive label
to the speaker with the highest predicted score. Predictions at the
timestamps marked as non-speech will be zeroed.

3.4. Evaluation

Table 1 illustrates the comparisons between our proposed system and
the official baseline [2]. Ablation experiments show that the Nega-
tive Sampling and MixUp methods can effectively improve the pri-
mary system. The final system outperforms the original baseline
significantly and obtains DERs of 7.84% and 8.82% on the develop-
ment and evaluation sets of the MISP 2022 database, respectively.

4. CONCLUSIONS

This paper presents an Audio-Visual Seq2Seq-TSVAD framework
for speaker diarization. By the ability of cross-speaker and cross-
modal voice activity detection, our proposed method achieves the
DER of 8.82% on the competition evaluation set, which ranks first
place in the speaker diarization track of the MISP 2022 Challenge.
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