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ABSTRACT

This paper presents our submitted system to task1 of
the multimodal information based speech processing (MISP)
challenge 2021. For task1 of audio-visual wake word spot-
ting, our main technical points include several kinds of
data augmentation methods and a two-stage model strategy.
For the first stage, a frequency-domain heterogeneous-input
multi-branch model is proposed to deal with the challenging
acoustic conditions. For the second stage, an alignment-free
lattice-free MMI model is used suppress the confusing words.
Tested on the development set and the evaluation set, our best
system showed absolute score reduction of 0.219 and 0.264
respectively, compared to the official baseline system and got
the first place in the challenge.

Index Terms— wake word spotting, adversarial samples,
heterogeneous-input, multi-branch model

1. INTRODUCTION

With severe multi-speaker speech overlap, background noise,
and reverberation in far-field home and meeting speech in-
teractive scenarios, the performance of keyword spotting de-
creases significantly.

In this context, the multimodal information based speech
processing (MISP) challenge aims to tackle these problems
by utilizing both audio and visual modal information. As we
empirically found in our experiments with audio-visual wake
word spotting, the visual modal could indeed improve the
performance. However, it brought marginal gains upon our
audio-only systems. So we only report our proposed audio-
only systems for the challenge.

2. PROPOSED SYSTEM

2.1. System description
In this session, we briefly introduce our main ideas and the
system design. The task1 results are evaluated by a combi-
nation score of false reject rate (FRR) and false alarm rate

* stands for equal contribution

(FAR). Due to the challenging recording environments, the
score of development data for the baseline system was 0.259.
During analyzing the results of the baseline system, we found
three main reasons for the badcases:

- The amount of training data is limited and the utterance
context is restricted as only short utterances are provided.

- The signal-to-noise ratio (SNR) is very low due to rever-
beration, strong noise and overlapping speakers.

- There are many confusing words that sound similar to
the wake word.

Accordingly, we explored different data augmentation
methods, leveraged multi-channel information and borrowed
the idea of two-stage strategy [1, 2, 3, 4] to alleviate these
salient issues. Fig. 1 shows our system workflow. We will
introduce the details in the next sections.
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Fig. 1. An illustration of our proposed system on task1.

2.2. Data Preprocessing and Augmentation

We explored data preprocessing and augmentation approaches
for improving robustness against noisy conditions and con-
fusing words.

2.2.1. Speech Enhancement and Separation
WPE (weighted prediction error) [5] and IVA (independent
vector analysis) [6] have been tried on the baseline system.



Though the methods achieved few gains and we did not use
them during the inference, output of speech enhancement and
separation methods can be viewed as perturbation of the train-
ing data and facilitated the robustness of our models when
used as part of our training data.

2.2.2. Negative Sub-segmentation
The duration distribution of positive data and negative data
are not exactly the same. There is severe overfitting when
training acoustic model without sub-segmentation [7]. The
duration distribution of different positive and negative sam-
ples will result in different ratios of positive and negative
samples in different length mini-batches. Models are easier
to overfit to the audio length rather than to learn specific key-
word. For example, the sample with a duration of more than
3 seconds would be all determined as negatives and ones with
a duration of less than 0.6 seconds would be decided as pos-
itives. In order to avoid this problem, we sub-segment the
negative data in the same way as [7] in data preprocessing.

2.2.3. Speed Perturbation
Our model architecture can handle audio of different lengths.
Alignment-free lattice-free MMI (AF-LF-MMI) [7] model is
trained on whole utterances rather than chunks. But the train-
ing utterances are of different lengths and we have no reli-
able time aligned boundaries. All utterances in a mini-batch
should have the same length. In practice, we choose a set of
numbers whose range covers the lengths of positive training
samples, which can be called as a duration set, and we ap-
proximate all durations of training samples to the duration set
by perturbing speed.

2.2.4. Adversarial samples generation
For suppressing confusing words, some novel augmentation
strategies [8, 9] for generating adversarial samples have been
proposed recently, including concatenating samples, synthe-
size samples and mask samples. We don’t adopt the wave-
form concatenation method because it leads to worse per-
formance on real data. It is very effective to suppress con-
fusing words by generating synthesized samples. However
the training data for task1 doesn’t have text-level annotations,
we couldn’t train a speech synthesis system, so we can’t use
the text-to-speech augmentation approach. To obtain training
samples of confused words, we applied random masking on
keyword samples like [9] and used them as the adversarial
negative data in training to improve the robustness of our sec-
ond stage model which is discussed in next section. In addi-
tion, negative samples that are false alarmed by the first-stage
are also used as adversarial samples.

2.2.5. Multi-channel data simulation
In order to increase the robustness of the acoustic models, we
adopt several data simulation techniques as stated in [10], in-
cluding simulating far-field data by convolving the near-field
speech with simulated room impulse response (RIR) [11], and
augmenting the far-field data by adding far-field noise.

2.2.6. Other augmentation

Augmenting the training data is an effective way to improve
the performance of the model on small data sets. Common
augmentation also includes volume perturbation, SpecAug-
ment [12] and trimming the beginning or end of the recording
slightly. We also applied these augmentation techniques to
the training data.

2.3. Two-stage strategy
2.3.1. First stage

The first stage model focuses on handling the noisy far-field
multi-channel speech. Multi-channel recordings of speech
contain spatial information, providing a supplement upon
time-frequency domain information for keyword spotting es-
pecially in noisy environments. We proposed a frequency
domain heterogeneous-input multi-branch model, which is
a combination of frequency domain multi-channel [13] and
multi-branch acoustic model [14].

Fig. 2. An illustration of frequency domain heterogeneous-
input multi-branch model.

As shown in Fig.2, for the mono-channel branch, there
is only one channel per time-frequency bin. For the multi-
channel branch, there are six channels per time-frequency bin.
The first stage model structure is CNN-TDNNF [15, 16]. It
was trained with LF-MMI [17]. We chose a working point
with a relatively low graph cost to ensure that the first stage
model has a high recall rate.

The first stage model of task1 was trained with pooled
data of both far-field, middle-field, close-talking and aug-
mented data. Our experiments were conducted based on
Kaldi [18, 19]. Sequence level training tends to overfit, so the
cross-entropy loss function is used together with the LF-MMI
loss function as a regularization. Although negative samples
are without text-level transcription, we can still train a simple
GMM-HMM model using the positive and negative label for
forced alignment and lattice generation.

Empirical analysis [20] shows that it would bring signifi-
cant improvements (8% relative reduction in word error rate)
in far-field speech recognition systems by training far-field
recognition model with higher quality alignments generated



by model trained on parallel close-talk microphone record-
ings. So we used the alignments from close-talk models.

2.3.2. Second stage
In the second stage, it is a TDNNF-based [21] single chan-
nel model, which is optimized with AF-LF-MMI [7]. The
second stage model focuses on judging whether speech re-
called by the first stage model contains a confusing word.
The second stage model was trained with pooled data of both
far-field, middle-field, close-talking, augmented data and ad-
versarial samples. In the second stage, multi-channel data is
split into multiple single channel data. All six channels of far-
field speech are evaluated by the second stage single-channel
model. Finally, channel fusion is adopted to combine results
from different channels. If more than half of the channels are
triggered, it determines that the utterance contains a keyword.

3. EXPERIMENTS AND RESULTS

Since only the far-field data is provided for evaluation set,
we mainly consider the far-field results of development and
evaluation set. Table 1 shows the performance of our task1
system. To compare with the official baseline system, we
trained TDNNF models based on LF-MMI, denoted as LF-
MMI-baseline. With the official training set (orig), the LF-
MMI baseline obtained a much better score than the official
baselines. Using data augmentation (orig+aug), the LF-MMI
baseline system achieved about 10% relative reduction in
score with respect to the one trained without augmentations.
Our first-stage-only model and second-stage-only model both
performed better than the LF-MMI baseline system. By de-
ploying the two-stage strategy, the two-stage-fusion model
further reduced the score by about 22% relatively upon the
second-stage-only model.

Model Data Dev-Middle Dev-Far Eval-Far

Official A - 0.15 0.27 -
Official A-V - 0.13 0.26 0.322

LF-MMI-baseline orig - 0.12 0.132
LF-MMI-baseline orig+aug - 0.092 0.118

First-stage-only orig+aug - 0.081 0.107
Second-stage-only orig+aug - 0.057 0.075

Two-stage-fusion - - 0.041 0.058

Table 1. Performance of our task1 system in terms of score.
The last line is our submitted result.

4. CONCLUSION

In this technical report, we present our system for task1 of
the MISP challenge. To handle multiple interference in the
recording environments and suppress the confusing words,
we used many kinds of augmentation methods and proposed a

two-stage model fusion strategy containing a heterogeneous-
input multi-branch model and an alignment-free lattice-free
MMI model. Submitting such an effective system, we ob-
tained the first place in task1 of the challenge.
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