MISP2021 track1

1. Audio Scheme

a. mono-channel pretrained model

[Pipeline]

[Input]

- · We collect all channel-level samples for training
- · We make data augment firstly, then extract 40-dim Fbank feature by kaldi, and adopt global CMN finally.
- · We fix the spectrogram into 300x40x1 shape as input.

[Method]

- We use 34-layers ResNet to learn the representation in TensorFlow.
 - · We choose sigmoid activation with CE target for training

[Post Processing]

• The best threshold is obtained according to the score in DEV dataset.

[Result]

- · Here, we calculate the average mono scores of one utterance.
- · dev: 0.12

b. Multi-channels model

• On the basic of mono-channel model, we further propose a multi-channel model to support microphone array.

(Pipeline)

[Method]

- Building 6-channels siamese network, where the weights of ResNet are initialized by the mono-channel network.
- Getting the corresponding embedding vector for each input using the shared ResNet, and concatenating into the one.
- · Training and giving the utterance-level score by sigmoid.

[Result]

· dev: 0.11

2. Video Scheme

[Pipeline]

[Input]

· A series of grey-scale map about lip from the video

[Method]

- Model
 - Video Frontend:
 - extract the coarse-grained feature of the lip from the video
 - Conv2dLSTM:
 - model the spatio-temporal information of the lip movement and get salient feature for classifier
 - FCs:
 - reduce the dimension of feature and classify
- Loss function
 - Class imbalance
 - assign weights for positive and negative class, i.e. the positive weight is the ratio of the number of negative samples and positive samples
 - Label smoothing
 - apply label smoothing to avoid over-fitting and improve the ability of the model to adapt.

[Post Processing]

· Lighten: Use Histogram equalization to lighten the lip input.

- · Use grid search to find the best threshold.
 - Supposed threshold is α and the model output is $[p_{out},n_{out}]$ both of which are not activated by softmax, we apply $+\alpha$ and $-\alpha$ on positive and negative score separately, and then get the prediction based on softmax result.
 - $_{\circ}$ Considering the equivariance of the argmax with softmax, α can be smaller than 0.

[Result]

· dev: 0.4136

3. Fusion Scheme

[Pipeline]

- · Through the above two models, we get dev's video(V) and audio(A) scores
- Two parameters in below formula:alpha represents the weight coefficient of V relative to A;t represents different threshold settings which determines whether to be waked up
- · We use grid search to find the best combination

$$\hat{\alpha}, \hat{t} = \underset{(\alpha,t)}{\operatorname{argmax}} Score(\frac{A+\alpha V}{1+\alpha},t)$$

[Input]

· dev's video(V) and audio(A) scores

[Result]

In test, we use the two parameters and get results:

· dev: 0.055

test: 0.108

Team: "XiaoMi No1"

Organization: Beijing Xiaomi Co. LTD